Effects of electronic structure on the hydration of PbNO3(+) and SrNO3(+) ion pairs.
نویسندگان
چکیده
Hydration of PbNO3(+) and SrNO3(+) with up to 30 water molecules was investigated with infrared photodissociation (IRPD) spectroscopy and with theory. These ions are the same size, yet the IRPD spectra of these ion pairs for n = 2-8 are significantly different. Bands in the bonded O-H region (∼3000-3550 cm(-1)) indicate that the onset of a second hydration shell begins at n = 5 for PbNO3(+) and n = 6 for SrNO3(+). Spectra for [PbNO3](+)(H2O)2-5 and [SrNO3](+)(H2O)3-6 indicate that the structures of clusters with Pb(ii) are hemidirected with a void in the coordinate sphere. A natural bond orbital analysis of [PbNO3](+)(H2O)5 indicates that the anisotropic solvation of the ion is due to a region of asymmetric electron density on Pb(ii) that can be explained by charge transfer from the nitrate and water ligands into unoccupied p-orbitals on Pb(ii). There are differences in the IRPD spectra of PbNO3(+) and SrNO3(+) with up to 25 water molecules attached. IR intensity in the bonded O-H region is blue-shifted by ∼50 cm(-1) in nanodrops containing SrNO3(+) compared to those containing PbNO3(+), indicative of a greater perturbation of the water H-bond network by strontium. The free O-H stretches of surface water molecules in nanodrops containing 10, 15, 20, and 25 water molecules are red-shifted by ∼3-8 cm(-1) for PbNO3(+) compared to those for SrNO3(+), consistent with more charge transfer between water molecules and Pb(ii). These results demonstrate that the different electronic structure of these ions significantly influences how they are solvated.
منابع مشابه
Electronic band structure of a Carbon nanotube superlattice
By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...
متن کاملElectronic band structure of a Carbon nanotube superlattice
By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...
متن کاملThermodynamical and Experimental Study of the Effects of Ball Clay-Silica Fume Combination on the Hydration and Strength
The production of ordinary Portland cement (OPC) as the most expensive constituent of concrete is associated with destructive environmental effects and significant energy consumption. Thus, the use of supplementary cementitious materials such as Natural or synthetic pozzolans is a fundamental solution that affects the kinetics of hydration of cementitious materials. In this article, to evaluate...
متن کاملSelective Binding of Cyclic Nanopeptide with Halides and Ion Pairs; a DFT-D3 Study
In this article, theoretical studies on the selective complexation of the halide ions (F¯, Cl¯ and Br¯) and ion pairs (Na+F¯, Na+Cl¯ and Na+Br¯) with the cyclic nano-hexapeptide (CP) composed of L-proline have been performed in the gas phase. In order to calculate the dispersion interaction energies of the CP and ions, DFT-D3 calculations at the M05-2X-D3/6-31G(d) level was employed. Based on t...
متن کاملThermodynamic Modeling of the Effects of Wollastonite-Silica Fume Combination in the Cement Hydration and Sulfate Attack
Sulfate attack is a series of physico-chemical reactions between hardened cement paste and sulfate ions. Sulfate ion penetration into the hydrated cement results in the formation of voluminous and deleterious phases such as gypsum and ettringite which are believed to cause deterioration and expansion of concrete. Concrete deterioration due to sulfate attack depends on many parameters, however, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 24 شماره
صفحات -
تاریخ انتشار 2015